Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Vaccines (Basel) ; 10(5)2022 May 20.
Article in English | MEDLINE | ID: covidwho-1875823

ABSTRACT

Longitudinal data comparing SARS-CoV-2 serology in individuals following infection and vaccination over 12 months are limited. This study compared the magnitude, decay, and variability in serum IgG, IgA, and neutralizing activity induced by natural infection (n = 218) or mRNA vaccination in SARS-CoV-2 naïve (n = 143) or experienced (n = 122) individuals over time using enzyme-linked immunosorbent assays and an in vitro virus neutralization assay. Serological responses were found to be highly variable after natural infection compared with vaccination but durable through 12 months. Antibody levels in vaccinated, SARS-CoV-2 naïve individuals peaked by 1 month then declined through 9 months, culminating in non-detectable SARS-CoV-2-specific serum IgA. Individuals with both infection and vaccination showed SARS-CoV-2-specific IgG and IgA levels that were more robust and slower to decline than the other groups; neutralizing activity remained highest in this group at 9 months past vaccination. These data reinforce the benefit of vaccination after SARS-CoV-2 recovery.

2.
mBio ; 13(3): e0018122, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1816698

ABSTRACT

Understanding immune memory to COVID-19 vaccines is critical for the design and optimal vaccination schedule for curbing the COVID-19 pandemic. Here, we assessed the status of humoral and cellular immune responses at 1, 3, 6, and 12 months after two-dose CoronaVac vaccination. A total of 150 participants were enrolled, and 136 of them completed the study through the 12-month endpoint. Our results show that, at 1 month after vaccination, both binding and neutralizing antibodies could be detected; the seropositive rate of binding antibodies and seroconversion rate of neutralizing antibodies were 99% and 50%, respectively. From 3 to 12 months, the binding and neutralizing antibodies declined over time. At 12 months, the binding and neutralizing antibodies were still detectable and significantly higher than the baseline. Gamma interferon (IFN-γ) and interleukin 2 (IL-2) secretion specifically induced by the receptor-binding domain (RBD) persisted at high levels until 6 months and could be observed at 12 months, while the levels of IL-5 and granzyme B (GzmB) were hardly detected, demonstrating a Th1-biased response. In addition, specific CD4+ T central memory (TCM), CD4+ effector memory (TEM), CD8+ TEM, and CD8+ terminal effector (TE) cells were all detectable and functional up to 12 months after the second dose, as the cells produced IFN-γ, IL-2, and GzmB in response to stimulation of SARS-CoV-2 RBD. Our work provides evidence that CoronaVac induced not only detectable binding and neutralizing antibody responses, but also functional SARS-CoV-2-specific CD4+ and CD8+ memory T cells for up to 12 months. IMPORTANCE CoronaVac is an inactivated vaccine containing whole-virion SARS-CoV-2, which has been approved in 43 countries for emergency use as of 26 November 2021. However, the long-term immune persistence of the CoronaVac vaccine is still unknown. Here, we reported the status of the persistence of antibodies and cellular responses within 12 months after two doses of CoronaVac. Such data are crucial to inform ongoing and future vaccination strategies to combat COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Cellular , Immunity, Humoral , Vaccines, Inactivated , Antibodies, Neutralizing , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Interleukin-2 , Pandemics , SARS-CoV-2 , Vaccination , Vaccines, Inactivated/immunology
3.
J Infect Dis ; 224(12): 2010-2019, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1574912

ABSTRACT

BACKGROUND: Characterizing the longevity and quality of cellular immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enhances understanding of coronavirus disease 2019 (COVID-19) immunity that influences clinical outcomes. Prior studies suggest SARS-CoV-2-specific T cells are present in peripheral blood 10 months after infection. Analysis of the function, durability, and diversity of cellular response long after natural infection, over a range of ages and disease phenotypes, is needed to identify preventative and therapeutic interventions. METHODS: We identified participants in our multisite longitudinal, prospective cohort study 12 months after SARS-CoV-2 infection representing a range of disease severity. We investigated function, phenotypes, and frequency of T cells specific for SARS-CoV-2 using intracellular cytokine staining and spectral flow cytometry, and compared magnitude of SARS-CoV-2-specific antibodies. RESULTS: SARS-CoV-2-specific antibodies and T cells were detected 12 months postinfection. Severe acute illness was associated with higher frequencies of SARS-CoV-2-specific CD4 T cells and antibodies at 12 months. In contrast, polyfunctional and cytotoxic T cells responsive to SARS-CoV-2 were identified in participants over a wide spectrum of disease severity. CONCLUSIONS: SARS-CoV-2 infection induces polyfunctional memory T cells detectable at 12 months postinfection, with higher frequency noted in those who experienced severe disease.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immunologic Memory , Memory T Cells , SARS-CoV-2/immunology , T-Lymphocyte Subsets/immunology , Adult , Antibodies, Viral , Antigens, Viral , Biomarkers , COVID-19/diagnosis , COVID-19/epidemiology , Female , Humans , Immunity, Cellular , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Severity of Illness Index , T-Lymphocyte Subsets/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL